Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 1990 Mar 5;212(1):37-52.

Type I (R1) and type II (R2) ribosomal DNA insertions of Drosophila melanogaster are retrotransposable elements closely related to those of Bombyx mori.

Author information

  • 1Department of Biology, University of Rochester, NY 14627.

Abstract

Approximately 50% of the ribosomal DNA (rDNA) units of Drosophila melanogaster are inactivated by two different 28 S RNA ribosomal gene insertions (type I and type II). We present here the nucleotide sequence of complete type I and type II elements. Conceptual translation of these sequences revealed open reading frames (ORFs) encoding amino acid residues conserved in all retrotransposable elements. Full-length type I elements are 5.35 x 10(3) base-pairs in length and contain two overlapping ORFs. The smaller ORF (471 amino acid residues) has similarity to gag genes, while the larger ORF (1021 residues) has similarity to pol genes. Full-length type II elements are 3.6 x 10(3) base-pairs and contain one large ORF (1056 residues) that appears to represent a gag-pol fusion. Type I and type II elements are similar in structure, in the proteins they encode, and in insertion specificity to the R1Bm and R2Bm retrotransposable elements of Bombyx mori. We suggest that the D. melanogaster elements be called R1Dm and R2Dm, to reflect their structure as retrotransposons. Comparison of the R1 and R2 elements from these two widely different species revealed regions of the ORF that are likely to play an important role in the propagation of the elements. Four distinct regions of sequence conservation separated by regions of little or no sequence similarity were detected for both the R1 and R2 elements: (1) cysteine motifs of the gag gene, with three such motifs for R1 and one motif for R2; (2) a reverse transcriptase domain; (3) an integrase domain located carboxyl terminal to the reverse transcriptase region; and (4) a small region amino terminal to the reverse transcriptase domain, whose function is not known. The level of identity of the amino acid residues for these segments is 28 to 34% between the R1 elements, and 34 to 39% for the R2 elements. Finally, it may be predicted that the mechanism of unequal crossover might eventually eliminate R1 and R2 from the rDNA locus. The long history of selection at the protein level exhibited by these elements indicates that it is their active transposition that maintains them in the locus. The high level of sequence homogeneity between copies of each element within the same species is consistent with the high turnover rate expected to result from these processes.

PMID:
1690812
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk