Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Phytother Res. 2006 Nov;20(11):952-60.

Stimulatory effects of extract prepared from the bark of Cinnamomum cassia blume on the function of osteoblastic MC3T3-E1 cells.

Author information

  • 1Department of Food Service Management, College of Hotel and Tourism Management, Kyung Hee University, Dongdaemoon-gu, Seoul, Korea.

Abstract

The ethanol extract from the bark of Cinnamomum cassia Blume (CCE) was tested for estrogenic activity. CCE (4-60 microg/mL) significantly induced the growth of MCF-7 cells, an ER-positive human breast cancer cell line, over that of untreated control cells (p < 0.05). In the ER competitive binding assay, CCE showed higher affinity with ERbeta compared with ERalpha. To investigate the bioactivities of CCE, which act on bone metabolism, the effects of CCE on the function of osteoblastic MC3T3-E1 cells and the production of local factors in osteoblasts were studied. CCE (4-60 microg/mL) dose-dependently increased the survival of MC3T3-E1 cells. In addition, CCE (10 and 50 microg/mL) increased alkaline phosphatase (ALP) activity, collagen synthesis and osteocalcin secretion in MC3T3-E1 cells. Treatment with CCE (10 and 50 microg/mL) prevented apoptosis induced by TNF-alpha (10(-10) m) in osteoblastic cells. In the presence of TNF-alpha, culture with CCE (10-100 microg/mL) for 48 h inhibited the production of IL-6 and nitric oxide in osteoblastic MC3T3-E1 cells. These results suggest that Cinnamomum cassia has a direct stimulatory effect on bone formation in vitro and may contribute to the prevention of osteoporosis and inflammatory bone diseases.

Copyright (c) 2006 John Wiley & Sons, Ltd.

PMID:
16906639
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk