Send to

Choose Destination
See comment in PubMed Commons below
Planta. 2007 Jan;225(2):499-513. Epub 2006 Aug 12.

Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype.

Author information

  • 1Western Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Crawley, Perth, WA, Australia.


Glyphosate is the world's most widely used herbicide. A potential substitute for glyphosate in some use patterns is the herbicide paraquat. Following many years of successful use, neither glyphosate nor paraquat could control a biotype of the widespread annual ryegrass (Lolium rigidum), and here the world's first case of multiple resistance to glyphosate and paraquat is confirmed. Dose-response experiments established that the glyphosate rate causing 50% mortality (LD(50)) for the resistant (R) biotype is 14 times greater than for the susceptible (S) biotype. Similarly, the paraquat LD(50 )for the R biotype is 32 times greater than for the S biotype. Thus, based on the LD(50 )R/S ratio, this R biotype of L. rigidum is 14-fold resistant to glyphosate and 32-fold resistant to paraquat. This R biotype also has evolved resistance to the acetyl-coenzyme A carboxylase (ACCase) inhibiting herbicides. The mechanism of paraquat resistance in this biotype was determined as restricted paraquat translocation. Resistance to ACCase-inhibiting herbicides was determined as due to an insensitive ACCase. Two mechanisms endowing glyphosate resistance were established: firstly, a point mutation in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, resulting in an amino acid substitution of proline to alanine at position 106; secondly, reduced glyphosate translocation was found in this R biotype, indicating a co-occurrence of two distinct glyphosate resistance mechanisms within the R population. In total, this R biotype displays at least four co-existing resistance mechanisms, endowing multiple resistance to glyphosate, paraquat and ACCase herbicides. This alarming case in the history of herbicide resistance evolution represents a serious challenge for the sustainable use of the precious agrochemical resources such as glyphosate and paraquat.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk