Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Mol Biol. 2006 Sep 8;362(1):114-22. Epub 2006 Aug 14.

Structure of the class IV adenylyl cyclase reveals a novel fold.

Author information

  • 1Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8310, USA. travis.gallagher@nist.gov

Abstract

The crystal structure of the class IV adenylyl cyclase (AC) from Yersinia pestis (Yp) is reported at 1.9 A resolution. The class IV AC fold is distinct from the previously described folds for class II and class III ACs. The dimeric AC-IV folds into an antiparallel eight-stranded barrel whose connectivity has been seen in only three previous structures: yeast RNA triphosphatase and two proteins of unknown function from Pyrococcus furiosus and Vibrio parahaemolyticus. Eight highly conserved ionic residues E10, E12, K14, R63, K76, K111, D126, and E136 lie in the barrel core and form the likely binding sites for substrate and divalent cations. A phosphate ion is observed bound to R63, K76, K111, and R113 near the center of the conserved cluster. Unlike the AC-II and AC-III active sites that utilize two-Asp motifs for cation binding, the AC-IV active site is relatively enriched in glutamate and features an ExE motif as its most conserved element. Homologs of Y. pestis AC-IV, including human thiamine triphosphatase, span the three kingdoms of life and delineate an ancient family of phosphonucleotide processing enzymes.

PMID:
16905149
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk