Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Leukemia. 2006 Nov;20(11):1915-24. Epub 2006 Aug 10.

The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis.

Author information

  • 1Stem Cell Biology Program at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA. mzrata01@louisville.edu

Abstract

Proper response of normal stem cells (NSC) to motomorphogens and chemoattractants plays a pivotal role in organ development and renewal/regeneration of damaged tissues. Similar chemoattractants may also regulate metastasis of cancer stem cells (CSC). Growing experimental evidence indicates that both NSC and CSC express G-protein-coupled seven-transmembrane span receptor CXCR4 and respond to its specific ligand alpha-chemokine stromal derived factor-1 (SDF-1), which is expressed by stroma cells from different tissues. In addition, a population of very small embryonic-like (VSEL) stem cells that express CXCR4 and respond robustly to an SDF-1 gradient was recently identified in adult tissues. VSELs express several markers of embryonic and primordial germ cells. It is proposed that these cells are deposited early in the development as a dormant pool of embryonic/pluripotent NSC. Expression of both CXCR4 and SDF-1 is upregulated in response to tissue hypoxia and damage signal attracting circulating NSC and CSC. Thus, pharmacological modulation of the SDF-1-CXCR4 axis may lead to the development of new therapeutic strategies to enhance mobilization of CXCR4+ NSC and their homing to damaged organs as well as inhibition of the metastasis of CXCR4+ cancer cells.

PMID:
16900209
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk