Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Phytochemistry. 2006 Sep;67(18):2017-29. Epub 2006 Aug 7.

Biosynthesis of curcuminoids and gingerols in turmeric (Curcuma longa) and ginger (Zingiber officinale): identification of curcuminoid synthase and hydroxycinnamoyl-CoA thioesterases.

Author information

  • 1Arizona Center for Phytomedicine Research and Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0036, USA.

Abstract

Members of the Zingiberaceae such as turmeric (Curcuma longa L.) and ginger (Zingiber officinale Rosc.) accumulate at high levels in their rhizomes important pharmacologically active metabolites that appear to be derived from the phenylpropanoid pathway. In ginger, these compounds are the gingerols; in turmeric these are the curcuminoids. Despite their importance, little is known about the biosynthesis of these compounds. This investigation describes the identification of enzymes in the biosynthetic pathway leading to the production of these bioactive natural products. Assays for enzymes in the phenylpropanoid pathway identified the corresponding enzyme activities in protein crude extracts from leaf, shoot and rhizome tissues from ginger and turmeric. These enzymes included phenylalanine ammonia lyase, polyketide synthases, p-coumaroyl shikimate transferase, p-coumaroyl quinate transferase, caffeic acid O-methyltransferase, and caffeoyl-CoA O-methyltransferase, which were evaluated because of their potential roles in controlling production of certain classes of gingerols and curcuminoids. All crude extracts possessed activity for all of these enzymes, with the exception of polyketide synthases. The results of polyketide synthase assays showed detectable curcuminoid synthase activity in the extracts from turmeric with the highest activity found in extracts from leaves. However, no gingerol synthase activity could be identified. This result was explained by the identification of thioesterase activities that cleaved phenylpropanoid pathway CoA esters, and which were found to be present at high levels in all tissues, especially in ginger tissues. These activities may shunt phenylpropanoid pathway intermediates away from the production of curcuminoids and gingerols, thereby potentially playing a regulatory role in the biosynthesis of these compounds.

PMID:
16890967
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk