Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Genomics. 2006 Aug 4;7:198.

Organization and post-transcriptional processing of focal adhesion kinase gene.

Author information

  • 1Unité Mixte de Recherche-Santé (UMR-S) 536, Institut National de la Santé et de la Recherche Médicale (INSERM) F-75005, Paris, France. corsi@fer-a-moulin.inserm.fr

Abstract

BACKGROUND:

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase critical for processes ranging from embryo development to cancer progression. Although isoforms with specific molecular and functional properties have been characterized in rodents and chicken, the organization of FAK gene throughout phylogeny and its potential to generate multiple isoforms are not well understood. Here, we study the phylogeny of FAK, the organization of its gene, and its post-transcriptional processing in rodents and human.

RESULTS:

A single orthologue of FAK and the related PYK2 was found in non-vertebrate species. Gene duplication probably occurred in deuterostomes after the echinoderma embranchment, leading to the evolution of PYK2 with distinct properties. The amino acid sequence of FAK and PYK2 is conserved in their functional domains but not in their linker regions, with the absence of autophosphorylation site in C. elegans. Comparison of mouse and human FAK genes revealed the existence of multiple combinations of conserved and non-conserved 5'-untranslated exons in FAK transcripts suggesting a complex regulation of their expression. Four alternatively spliced coding exons (13, 14, 16, and 31), previously described in rodents, are highly conserved in vertebrates. Cis-regulatory elements known to regulate alternative splicing were found in conserved alternative exons of FAK or in the flanking introns. In contrast, other reported human variant exons were restricted to Homo sapiens, and, in some cases, other primates. Several of these non-conserved exons may correspond to transposable elements. The inclusion of conserved alternative exons was examined by RT-PCR in mouse and human brain during development. Inclusion of exons 14 and 16 peaked at the end of embryonic life, whereas inclusion of exon 13 increased steadily until adulthood. Study of various tissues showed that inclusion of these exons also occurred, independently from each other, in a tissue-specific fashion.

CONCLUSION:

The alternative coding exons 13, 14, 16, and 31 are highly conserved in vertebrates and their inclusion in mRNA is tightly but independently regulated. These exons may therefore be crucial for FAK function in specific tissues or during development. Conversely pathological disturbance of the expression of FAK and of its isoforms could lead to abnormal cellular regulation.

PMID:
16889663
[PubMed - indexed for MEDLINE]
PMCID:
PMC1570463
Free PMC Article

Images from this publication.See all images (8)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk