Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Environ Health Perspect. 2006 Aug;114(8):1172-8.

Translocation of inhaled ultrafine manganese oxide particles to the central nervous system.

Author information

  • 1Department of Environmental Medicine, University of Rochester, Rochester, New York 14642, USA. Alison_Elder@urmc.rochester.edu

Erratum in

  • Environ Health Perspect. 2006 Aug;114(8):1178.

Abstract

BACKGROUND:

Studies in monkeys with intranasally instilled gold ultrafine particles (UFPs; <100 nm) and in rats with inhaled carbon UFPs suggested that solid UFPs deposited in the nose travel along the olfactory nerve to the olfactory bulb.

METHODS:

To determine if olfactory translocation occurs for other solid metal UFPs and assess potential health effects, we exposed groups of rats to manganese (Mn) oxide UFPs (30 nm; approximately 500 microg/m(superscript)3(/superscript)) with either both nostrils patent or the right nostril occluded. We analyzed Mn in lung, liver, olfactory bulb, and other brain regions, and we performed gene and protein analyses.

RESULTS:

After 12 days of exposure with both nostrils patent, Mn concentrations in the olfactory bulb increased 3.5-fold, whereas lung Mn concentrations doubled; there were also increases in striatum, frontal cortex, and cerebellum. Lung lavage analysis showed no indications of lung inflammation, whereas increases in olfactory bulb tumor necrosis factor-alpha mRNA (approximately 8-fold) and protein (approximately 30-fold) were found after 11 days of exposure and, to a lesser degree, in other brain regions with increased Mn levels. Macrophage inflammatory protein-2, glial fibrillary acidic protein, and neuronal cell adhesion molecule mRNA were also increased in olfactory bulb. With the right nostril occluded for a 2-day exposure, Mn accumulated only in the left olfactory bulb. Solubilization of the Mn oxide UFPs was <1.5% per day.

CONCLUSIONS:

We conclude that the olfactory neuronal pathway is efficient for translocating inhaled Mn oxide as solid UFPs to the central nervous system and that this can result in inflammatory changes. We suggest that despite differences between human and rodent olfactory systems, this pathway is relevant in humans.

Comment in

PMID:
16882521
[PubMed - indexed for MEDLINE]
PMCID:
PMC1552007
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk