Send to:

Choose Destination
See comment in PubMed Commons below
Rev Neurosci. 2006;17(3):279-307.

Regulation of synaptic transmission by CRF receptors.

Author information

  • 1Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555-1031, USA.


Corticotropin-releasing factor (CRF or CRH) and its family of related peptides have long been recognized as hypothalamic-pituitary-adrenal (HPA) axis peptides that function to regulate the release of other hormones, e.g., ACTH. In addition, CRF acts outside the HPA axis not as a hormone, but as a regulator of synaptic transmission, pre- and post-synaptically, within specific CNS neuronal circuits. Synaptic transmission within the nervous system is today understood to be a more complex process compared to the concepts associated with the term 'synapse' introduced by Sherrington in 1897. Based on more than a century of progress with modern cellular and molecular experimental techniques, prior definitions and functions of synaptic molecules and their receptors need to be reconsidered (see Glossary and Fig. 1), especially in light of the important roles for CRF, its family of peptides and other potential endogenous regulators of neurotransmission, e.g., vasopressin, NPY, etc. (see Glossary). In addition, the property of 'constitutive activity' which is associated with G-protein coupled receptors (GPCRs) provides a persistent tonic mechanism to fine-tune synaptic transmission during both acute and chronic information transfer. We have applied the term 'regulator', adapted from the hormone literature, to CRF, as an example of a specific endogenous substance that functions to facilitate or depress the actions of neuromodulators on fast and slow synaptic responses. As such, synaptic neuroregulators provide a basic substrate to prime or initiate silently plastic processes underlying neurotransmitter-mediated information transfer at CNS synapses. Here we review the role of CRF to regulate CNS synaptic transmission and also suggest how under a variety of allostatic changes, e.g., associated with normal plasticity, or adaptations resulting from mental disorders, the synaptic regulatory role for CRF may be 'switched' in its polarity and/or magnitude in order to provide a coping mechanism to deal with daily and life-long stressors. Thus, a prominent role we assign to non-HPA axis CRF, its family of peptides, and their receptors, is to maintain both acute and chronic synaptic stability.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk