Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Matrix Biol. 2006 Sep;25(7):398-408. Epub 2006 Jun 18.

Disassembly of the vimentin cytoskeleton disrupts articular cartilage chondrocyte homeostasis.

Author information

  • 1Connective Tissue Biology Laboratories, Biomedical Sciences Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3US, Wales, UK. BLAIN@cardiff.ac.uk

Abstract

Articular cartilage functions in dissipating forces applied across joints. It comprises an extracellular matrix containing primarily collagens, proteoglycans and water to maintain its functional properties, and is interspersed with chondrocytes. The chondrocyte cytoskeleton comprises actin microfilaments, tubulin microtubules and vimentin intermediate filaments. Previous studies have determined the contribution of actin and tubulin in regulating the synthesis of the extracellular matrix components aggrecan and type II collagen. The contribution of vimentin to extracellular matrix biosynthesis in any cell type has not previously been addressed. Therefore the aim of this study was to assess the role of vimentin in cartilage chondrocyte metabolism. Vimentin intermediate filaments were disrupted in high-density monolayer articular chondrocyte cultures using acrylamide for 7 days. De novo protein and collagen synthesis were measured by adding [3H]-proline, and sulphated glycosaminoglycan (sGAG) synthesis measured by adding [35S]-sulphate to cultures. Vimentin disruption resulted in decreased collagen synthesis, whilst sGAG synthesis was unaffected. In addition, there was a significant reduction in type II collagen and aggrecan gene transcription suggesting that the effects observed occur at both the transcriptional and translational levels. A 3-day cold chase demonstrated a significant inhibition of collagen and sGAG degradation; the reduction in collagen degradation was corroborated by the observed reduction in both pro-MMP 2 expression and activation. We have demonstrated that an intact vimentin intermediate filament network contributes to the maintenance of the chondrocyte phenotype and thus an imbalance favouring filament disassembly can disturb the integrity of the articular cartilage, and may ultimately lead to the development of pathologies such as osteoarthritis.

PMID:
16876394
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk