Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Exp Gerontol. 2006 Oct;41(10):1032-9. Epub 2006 Jul 26.

Pharmacology of delayed aging and extended lifespan of Caenorhabditis elegans.

Author information

  • 1Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA.

Abstract

The identification and analysis of compounds that delay aging and extend lifespan is an important aspect of gerontology research; these studies can test theories of aging, lead to the discovery of endogenous systems that influence aging, and establish the foundation for treatments that might delay normal human aging. Here we review studies using the nematode Caenorhabditis elegans to identify and characterize compounds that delay aging and extend lifespan. These studies are considered in four groups: (1) Studies that address the free-radical theory of aging by analyzing candidate compounds with antioxidant activities including vitamin E, tocotrienols, coenzyme Q, and Eukarion-8/134. (2) Studies that analyze plant extracts (blueberry and Ginko biloba) that contain a mixture of compounds. (3) Studies of resveratrol, which was identified in a screen for compounds that affect the activity of the Sir2 protein that influences lifespan. (4) Studies based on screening compound libraries using C. elegans aging as a bioassay, which led to the identification of the anticonvulsant medicines ethosuximide and trimethadione. There has been exciting progress in the analysis of compounds that influence C. elegans aging, and important challenges and opportunities remain in determining the mechanisms of action of these compounds and the relevance of these observations to aging of other animals.

PMID:
16872777
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk