Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Expert Opin Drug Metab Toxicol. 2005 Dec;1(4):641-54.

Functional interactions between P-glycoprotein and CYP3A in drug metabolism.

Author information

  • 1University of Colorado Health Sciences Center, Clinical Research & Development, Department of Anesthesiology, Denver, Colorado 80262, USA. uwe.christians@uchsc.edu


The interaction between drug-metabolising enzymes and active transporters is an emerging concept in pharmacokinetics. In the gut mucosa, P-glycoprotein and cytochrome P450 (CYP)3A functionally interact in three ways: i) drugs are repeatedly taken up and pumped out of the enterocytes by P-glycoprotein, thus increasing the probability of drugs being metabolised; ii) P-glycoprotein keeps intracellular drug concentrations within the linear range of the metabolising capacity of CYP3A; and iii) P-glycoprotein transports drug metabolites formed in the mucosa back into the gut lumen. In comparison with the gut mucosa, in hepatocytes the spatial sequence of CYP3A and P-glycoprotein is reversed, resulting in different effects when the activity of one or both are changed. CYP3A and P-glycoprotein are both regulated by nuclear receptors such as the pregnane X receptor (PXR). There is significant genetic variability of CYP3A, P-glycoprotein and PXR and their expression and activity is dependent on coadministered drugs, herbs, food, age, hormonal status and disease. Future pharmacogenomic and pharmacokinetic studies will have to take all three components into account to allow for valid conclusions.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Informa Healthcare
    Loading ...
    Write to the Help Desk