Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Yeast. 2006 Jul 30;23(10):735-40.

Inorganic polyphosphate and exopolyphosphatase in the nuclei of Saccharomyces cerevisiae: dependence on the growth phase and inactivation of the PPX1 and PPN1 genes.

Author information

  • 1Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia. alla@ibpm.pushchino.ru

Abstract

Nuclei of the yeast Saccharomyces cerevisiae possess inorganic polyphosphates (polyP) with chain lengths of ca. 10-200 phosphate residues. Subfractionation of the nuclei reveals that the most part of polyP is not associated with DNA. Transition of the yeast cells from stationary phase to active growth at orthophosphate (P(i)) excess in the medium is followed by the synthesis of the shortest polyP (<15 phosphate residues) and hydrolysis of the high-molecular polyP (>45 phosphate residues) in the nuclei. Nuclear exopolyphosphatase (exopolyPase) activity does not depend on the growth phase. The PPX1 gene encoding the major cytosolic exopolyPase does not encode the nuclear one and its inactivation has no effect on polyP metabolism in this compartment. Under inactivation of the PPN1 gene encoding another yeast exopolyPase, elimination of the nuclear exopolyPase is observed. The effect of PPN1 inactivation on the polyP level in the nuclei is insignificant in the stationary phase, while in the exponential phase this level increases 2.3-fold as compared with the parent strain of S. cerevisiae. In the active growth phase, no hydrolysis of high-molecular polyP is detected while the synthesis of short-chain polyP is retained. The data obtained indicate substantial changes in polyP metabolism in nuclei under the renewal of active growth, which only partially depends on the genes of polyP metabolism known to date.

Copyright (c) 2006 John Wiley & Sons, Ltd.

PMID:
16862600
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk