Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Phylogenet Evol. 2007 Jan;42(1):1-13. Epub 2006 Jun 7.

Resolving the root of the avian mitogenomic tree by breaking up long branches.

Author information

  • 1Allan Wilson Center for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand.

Abstract

Incomplete taxon sampling has been a major problem in resolving the early divergences in birds. Five new mitochondrial genomes are reported here (brush-turkey, lyrebird, suboscine flycatcher, turkey vulture, and a gull) and three break up long branches that tended to attract the distant reptilian outgroup. These long branches were to galliforms, and to oscine and suboscine passeriformes. Breaking these long branches leaves the root, as inferred by maximum likelihood and Bayesian phylogenetic analyses, between paleognaths and neognaths. This means that morphological, nuclear, and mitochondrial data are now in agreement on the position of the root of the avian tree and we can, move on to other questions. An overview is then given of the deepest divisions in the mitogenomic tree inferred from complete mitochondrial genomes. The strict monophyly of both the galloanseres and the passerines is strongly supported, leaving the deep six-way split within Neoaves as the next major question for which resolution is still lacking. Incomplete taxon sampling was also a problem for Neoaves, and although some resolution is now available there are still problems because current phylogenetic methods still fail to account for real features of DNA sequence evolution.

PMID:
16854605
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk