Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Phys Chem B. 2005 Aug 4;109(30):14416-25.

Effects of dipole moment, linkers, and chromophores at side chains on long-range electron transfer through helical peptides.

Author information

  • 1Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

Abstract

Octadecapeptides carrying a ferrocene moiety at the molecular terminal were self-assembled on gold, and long-range electron transfer from the ferrocene moiety to gold was investigated by electrochemical methods. Effects on electron transfer of dipole moment of helical peptides, linkers connecting the peptide to gold, and chromophores introduced into the side chains were discussed. Cyclic voltammetry of the monolayers in an aqueous solution revealed that long-range electron transfer over 40 A occurred along the peptide molecule. Chronoamperometry showed that the long-range electron transfer should be ascribed to a hopping mechanism with use of amide groups as hopping sites. Electron transfer through the long peptide was not significantly accelerated by the dipole moment. However, the linker remarkably affected electron transfer depending on whether it was a methylene chain or a phenylene group, suggesting that local electron transfer between gold and the peptides should be the slowest step to determine the overall rate. Pyrenyl groups introduced into the side chains in the middle of the peptide molecule did not noticeably change electron transfer, probably because pyrenyl groups were too distant to allow direct electron transfer between them. Electrostatic potential profiles across the peptide monolayers were also calculated to explain reasonably the several interesting features in the present peptide systems.

PMID:
16852814
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk