Send to:

Choose Destination
See comment in PubMed Commons below
J Phys Chem B. 2005 May 19;109(19):9843-8.

Photoinduced electron transfer competitive with energy transfer of the excited triplet state of [60]fullerene to ferrocene derivatives revealed by combination of transient absorption and thermal lens measurements.

Author information

  • 1Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, 980-8577 Japan.


The quenching processes of the exited triplet state of fullerene (3C60) by ferrocene (Fc) derivatives have been observed by the transient absorption spectroscopy and thermal lens methods. Although 3C60 was efficiently quenched by Fc in the rate close to the diffusion controlled limit, the quantum yields (phi(et)) for the generation of the radical anion of C60 (C60*-) via 3C60 were quite low even in polar solvents; nevertheless, the free-energy changes (deltaG(et)) of electron transfer from Fc to 3C60 are sufficiently negative. In benzonitrile (BN), the phi(et) value for unsubstitued Fc was less than 0.1. The thermal lens method indicates that energy transfer from 3C60 to Fc takes place efficiently, suggesting that the excited triplet energy level of Fc was lower than that of 3C60. Therefore, energy transfer from 3C60 to ferrocene decreases the electron-transfer process from ferrocene to 3C60. To increase the participation of electron transfer, introduction of electron-donor substituents to Fc (phi(et) = 0.46 for decamethylferrocene in BN) and an increase in solvent polarity (phi(et) = 0.58 in BN:DMF (1:2) for decamethylferrocene) were effective.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk