Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Phys Chem B. 2005 Apr 28;109(16):7724-32.

FTIR adsorption studies of H2O and CH3OH in the isostructural H-SSZ-13 and H-SAPO-34: formation of H-bonded adducts and protonated clusters.

Author information

  • 1Dipartimento di Chimica IFM and NIS Centre of Excellence, Via P. Giuria 7, I-10125 Torino, Italy.


The acidity of the isostructural H-SSZ-13 and H-SAPO-34 has been investigated by transmission FTIR spectroscopy using H2O and CH3OH as molecular probes. Interactions between the zeolitic samples and the probe molecules led to perturbations and proton transfers directly related to the acidity of the materials. The entire set of acidic sites in H-SSZ-13 interacts with H2O and CH3OH to give H-bonded adducts or protonated species. H3O+ is not formed in appreciable amounts upon H2O adsorption on H-SSZ-13, but at high coverages H2O generates clusters that have a proton affinity sufficiently high to abstract protons from the zeolite framework. Parallel experiments carried out for H-SAPO-34 showed that the H2O clusters abstract protons from Brønsted sites only to a minor extent. Moving to CH3OH, even if it has a higher proton affinity than H2O and should expectingly experience an easier protonation, proton transfer is totally absent in H-SAPO-34 under our set of conditions. The clear evidence of methanol protonation in H-SSZ-13 definitely states the strong acidic character of this material. When irreversibly adsorbed CH3OH is present in H-SSZ-13, an appreciable amount of (CH3)2O is formed upon heating to 573 K. Compared to its SAPO analogue, the present set of data indisputably points to H-SSZ-13 as the strongest Brønsted acidic material.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk