Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Biol Chem. 2006 Oct 6;281(40):29972-87. Epub 2006 Jul 10.

Direct evidence for the modulation of the activity of the Erwinia chrysanthemi quorum-sensing regulator ExpR by acylhomoserine lactone pheromone.

Author information

  • 1Unité de Microbiologie et Génétique, Unité Mixte de Recherche CNRS-Université Lyon 1-Institut National des Sciences Appliquées de Lyon 5122, Domaine Scientifique de la Doua, bâtiment André Lwoff 10 rue Raphaël Dubois, 69622 Villeurbanne Cedex, France.

Abstract

In Erwinia chrysanthemi production of pectic enzymes is controlled by a complex network involving several regulators. Among them is ExpR, the quorum-sensing regulatory protein. ExpR is a member of the LuxR family of transcriptional regulators, the activity of which is modulated by the binding of diffusible N-acylhomoserine lactone pheromones to the N-terminal receptor site of the proteins. Previous in vitro DNA-ExpR binding studies suggested that ExpR might activate pectic enzyme production and repress its cognate gene expression. This report presents genetic evidence that ExpR represses its own gene expression in the absence of pheromone and that the addition of pheromone promotes concentration-dependent de-repression. In vitro experiments show that (i) ExpR binds target DNA in the absence of pheromone and that the pheromone dissociates ExpR-DNA complexes, (ii) ExpR binds target DNA in a non-cooperative fashion, and (iii) two molecules of pheromone are bound per molecule of ExpR dimer. In the absence of N-(3-oxo-hexanoyl)-homoserine lactone, ExpR prevents RNA polymerase access to the expR promoter, thereby directly repressing transcription initiation. The presence of pheromone renders the expR promoter accessible to RNA polymerase and results in the de-repression of transcription initiation. Overall we have established that there is a direct modulation of the repressive activity of a LuxR family regulator by a pheromone. Furthermore, site-directed mutagenesis experiments strongly suggest that the ExpR residues Leu-19, Tyr-31, and Ser-125 are involved in the transduction of conformational changes induced by ligand binding, and this provides new insights into the structure-function relationship of this bacterial regulator family.

PMID:
16831870
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk