Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2006 Sep 8;281(36):26014-21. Epub 2006 Jul 9.

Evidence that clustered phosphocholine head groups serve as sites for binding and assembly of an oligomeric protein pore.

Author information

  • 1Institute of Medical Microbiology and Hygiene, Hochhaus am Augustusplatz, D-55101 Mainz, Germany.


High susceptibility of rabbit erythrocytes toward the pore-forming action of staphylococcal alpha-toxin correlates with the presence of saturable, high affinity binding sites. All efforts to identify a protein or glycolipid receptor have failed, and the fact that liposomes composed solely of phosphatidylcholine are efficiently permeabilized adds to the enigma. A novel concept is advanced here to explain the puzzle. We propose that low affinity binding moieties can assume the role of high affinity binding sites due to their spatial arrangement in the membrane. Evidence is presented that phosphocholine head groups of sphingomyelin, clustered in sphingomyelin-cholesterol microdomains, serve this function for alpha-toxin. Clustering is required so that oligomerization, which is prerequisite for stable attachment of the toxin to the membrane, can efficiently occur. Outside these clusters, binding to phosphocholine is too transient for toxin monomers to find each other. The principle of membrane targeting in the absence of any genuine, high affinity receptor may also underlie the assembly of other lipid-inserted oligomers including cytotoxic peptides, protein toxins, and immune effector molecules.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk