Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Toxicol Sci. 2006 Oct;93(2):223-41. Epub 2006 Jul 7.

The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds.

Author information

  • 1World Health Organization Collaborating Centre for Research on Environmental Health Risk Assessment and Institute for Risk Assessment Sciences, Science and University Medical Center, Universiteit Utrecht, The Netherlands. m.vandenberg@iras.uu.nl

Abstract

In June 2005, a World Health Organization (WHO)-International Programme on Chemical Safety expert meeting was held in Geneva during which the toxic equivalency factors (TEFs) for dioxin-like compounds, including some polychlorinated biphenyls (PCBs), were reevaluated. For this reevaluation process, the refined TEF database recently published by Haws et al. (2006, Toxicol. Sci. 89, 4-30) was used as a starting point. Decisions about a TEF value were made based on a combination of unweighted relative effect potency (REP) distributions from this database, expert judgment, and point estimates. Previous TEFs were assigned in increments of 0.01, 0.05, 0.1, etc., but for this reevaluation, it was decided to use half order of magnitude increments on a logarithmic scale of 0.03, 0.1, 0.3, etc. Changes were decided by the expert panel for 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) (TEF = 0.3), 1,2,3,7,8-pentachlorodibenzofuran (PeCDF) (TEF = 0.03), octachlorodibenzo-p-dioxin and octachlorodibenzofuran (TEFs = 0.0003), 3,4,4',5-tetrachlorbiphenyl (PCB 81) (TEF = 0.0003), 3,3',4,4',5,5'-hexachlorobiphenyl (PCB 169) (TEF = 0.03), and a single TEF value (0.00003) for all relevant mono-ortho-substituted PCBs. Additivity, an important prerequisite of the TEF concept was again confirmed by results from recent in vivo mixture studies. Some experimental evidence shows that non-dioxin-like aryl hydrocarbon receptor agonists/antagonists are able to impact the overall toxic potency of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds, and this needs to be investigated further. Certain individual and groups of compounds were identified for possible future inclusion in the TEF concept, including 3,4,4'-TCB (PCB 37), polybrominated dibenzo-p-dioxins and dibenzofurans, mixed polyhalogenated dibenzo-p-dioxins and dibenzofurans, polyhalogenated naphthalenes, and polybrominated biphenyls. Concern was expressed about direct application of the TEF/total toxic equivalency (TEQ) approach to abiotic matrices, such as soil, sediment, etc., for direct application in human risk assessment. This is problematic as the present TEF scheme and TEQ methodology are primarily intended for estimating exposure and risks via oral ingestion (e.g., by dietary intake). A number of future approaches to determine alternative or additional TEFs were also identified. These included the use of a probabilistic methodology to determine TEFs that better describe the associated levels of uncertainty and "systemic" TEFs for blood and adipose tissue and TEQ for body burden.

PMID:
16829543
[PubMed - indexed for MEDLINE]
PMCID:
PMC2290740
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk