Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Clin Microbiol. 2006 Jul;44(7):2553-7.

Nonrandom distribution of Burkholderia pseudomallei clones in relation to geographical location and virulence.

Author information

  • 1Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok 10400, Thailand, and Churchill Hospital, Oxford, UK.

Abstract

Burkholderia pseudomallei is a soil-dwelling saprophyte and the causative agent of melioidosis, a life-threatening human infection. Most cases are reported from northeast Thailand and northern Australia. Using multilocus sequence typing (MLST), we have compared (i) soil and invasive isolates from northeast Thailand and (ii) invasive isolates from Thailand and Australia. A total of 266 Thai B. pseudomallei isolates were characterized (83 soil and 183 invasive). These corresponded to 123 sequence types (STs), the most abundant being ST70 (n=21), ST167 (n=15), ST54 (n=12), and ST58 (n=11). Two clusters of related STs (clonal complexes) were identified; the larger clonal complex (CC48) did not conform to a simple pattern of radial expansion from an assumed ancestor, while a second (CC70) corresponded to a simple radial expansion from ST70. Despite the large number of STs, overall nucleotide diversity was low. Of the Thai isolates, those isolated from patients with melioidosis were overrepresented in the 10 largest clones (P<0.0001). There was a significant difference in the classification index between environmental and disease isolates (P<0.001), confirming that genotypes were not distributed randomly between the two samples. MLST profiles for 158 isolates from Australia (mainly disease associated) contained a number of STs (96) similar to that seen with the Thai invasive isolates, but no ST was found in both populations. There were also differences in diversity and allele frequency distribution between the two populations. This analysis reveals strong genetic differentiation on the basis of geographical isolation and a significant differentiation on the basis of virulence potential.

PMID:
16825379
[PubMed - indexed for MEDLINE]
PMCID:
PMC1489466
Free PMC Article

Images from this publication.See all images (2)Free text

FIG. 1.
FIG. 2.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk