Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2006 Jul;72(7):4755-60.

Anaerobic sulfide oxidation with nitrate by a freshwater Beggiatoa enrichment culture.

Author information

  • 1Institute for Microbiology, University of Hannover, Schneiderberg 50, 30167 Hannover, Germany. anja.kamp@ifmb.uni-hannover.de

Abstract

A lithotrophic freshwater Beggiatoa strain was enriched in O2-H2S gradient tubes to investigate its ability to oxidize sulfide with NO3- as an alternative electron acceptor. The gradient tubes contained different NO3- concentrations, and the chemotactic response of the Beggiatoa mats was observed. The effects of the Beggiatoa sp. on vertical gradients of O2, H2S, pH, and NO3- were determined with microsensors. The more NO3- that was added to the agar, the deeper the Beggiatoa filaments glided into anoxic agar layers, suggesting that the Beggiatoa sp. used NO3- to oxidize sulfide at depths below the depth that O2 penetrated. In the presence of NO3- Beggiatoa formed thick mats (>8 mm), compared to the thin mats (ca. 0.4 mm) that were formed when no NO3- was added. These thick mats spatially separated O2 and sulfide but not NO3- and sulfide, and therefore NO3- must have served as the electron acceptor for sulfide oxidation. This interpretation is consistent with a fourfold-lower O2 flux and a twofold-higher sulfide flux into the NO3- -exposed mats compared to the fluxes for controls without NO3-. Additionally, a pronounced pH maximum was observed within the Beggiatoa mat; such a pH maximum is known to occur when sulfide is oxidized to S0 with NO3- as the electron acceptor.

PMID:
16820468
[PubMed - indexed for MEDLINE]
PMCID:
PMC1489373
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk