Send to:

Choose Destination
See comment in PubMed Commons below
Physiol Rev. 2006 Jul;86(3):1009-31.

Astrocyte control of synaptic transmission and neurovascular coupling.

Author information

  • 1Silvio Conte Center for Integration at the Tripartite Synapse, Department of Neuroscience, University of Pennsylvania School of Medicine, PA 19104, USA.


From a structural perspective, the predominant glial cell of the central nervous system, the astrocyte, is positioned to regulate synaptic transmission and neurovascular coupling: the processes of one astrocyte contact tens of thousands of synapses, while other processes of the same cell form endfeet on capillaries and arterioles. The application of subcellular imaging of Ca2+ signaling to astrocytes now provides functional data to support this structural notion. Astrocytes express receptors for many neurotransmitters, and their activation leads to oscillations in internal Ca2+. These oscillations induce the accumulation of arachidonic acid and the release of the chemical transmitters glutamate, d-serine, and ATP. Ca2+ oscillations in astrocytic endfeet can control cerebral microcirculation through the arachidonic acid metabolites prostaglandin E2 and epoxyeicosatrienoic acids that induce arteriole dilation, and 20-HETE that induces arteriole constriction. In addition to actions on the vasculature, the release of chemical transmitters from astrocytes regulates neuronal function. Astrocyte-derived glutamate, which preferentially acts on extrasynaptic receptors, can promote neuronal synchrony, enhance neuronal excitability, and modulate synaptic transmission. Astrocyte-derived d-serine, by acting on the glycine-binding site of the N-methyl-d-aspartate receptor, can modulate synaptic plasticity. Astrocyte-derived ATP, which is hydrolyzed to adenosine in the extracellular space, has inhibitory actions and mediates synaptic cross-talk underlying heterosynaptic depression. Now that we appreciate this range of actions of astrocytic signaling, some of the immediate challenges are to determine how the astrocyte regulates neuronal integration and how both excitatory (glutamate) and inhibitory signals (adenosine) provided by the same glial cell act in concert to regulate neuronal function.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk