Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Trends Immunol. 2006 Aug;27(8):352-7. Epub 2006 Jun 27.

TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity.

Author information

  • 1School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland. ecreagh@tcd.ie


Significant advances in our understanding of innate immunity have been made following the identification of three families of pathogen sensors: Toll-like receptors (TLRs), NOD-like receptors (NLRs) and RIG-I-like receptors (RLRs). Members of the TLR family recognize bacteria, viruses, fungi and protozoa; NLRs with known functions detect bacteria, and RLRs are anti-viral. It is likely that interplay between these families ensures the efficient co-ordination of innate immune responses, through either synergistic or co-operative signalling. Important interactions occur between TLRs and certain NLRs for inducing the pro-inflammatory cytokine interleukin (IL)-1beta. TLRs induce pro-IL-1beta production and prime NLR-containing multi-protein complexes, termed "inflammasomes", to respond to bacterial products and products of damaged cells. This results in caspase-1 activation and the subsequent processing of pro-IL-1beta to its active form. In this article, we hypothesize that during the first phase of the host response to infection, an important interplay occurs between these families, providing a substantial combinatorial repertoire in innate immunity.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk