Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Immunol. 2007 Feb;44(5):866-77. Epub 2006 Jun 27.

Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties.

Author information

  • 1Bioinformatics and Drug Design Group, Department of Pharmacy and Department of Computational Science, National University of Singapore, Singapore 117543, Republic of Singapore.

Abstract

Peptide binding to MHC is critical for antigen recognition by T-cells. To facilitate vaccine design, computational methods have been developed for predicting MHC-binding peptides, which achieve impressive prediction accuracies of 70-90% for binders and 40-80% for non-binders. These methods have been developed for peptides of fixed lengths, for a limited number of alleles, trained from small number of non-binders, and in some cases based straightforwardly on sequence. These limit prediction coverage and accuracy particularly for non-binders. It is desirable to explore methods that predict binders of flexible lengths from sequence-derived physicochemical properties and trained from diverse sets of non-binders. This work explores support vector machines (SVM) as such a method for developing prediction systems of 18 MHC class I and 12 class II alleles by using 4208-3252 binders and 234,333-168,793 non-binders, and evaluated by an independent set of 545-476 binders and 110,564-84,430 non-binders. Binder accuracies are 86-99% for 25 and 70-80% for 5 alleles, non-binder accuracies are 96-99% for 30 alleles. Binder accuracies are comparable and non-binder accuracies substantially improved against other results. Our method correctly predicts 73.3% of the 15 newly-published epitopes in the last 4 months of 2005. Of the 251 recently-published HLA-A*0201 non-epitopes predicted as binders by other methods, 63 are predicted as binders by our method. Screening of HIV-1 genome shows that, compared to other methods, a comparable percentage (75-100%) of its known epitopes is correctly predicted, while a lower percentage (0.01-5% for 24 and 5-8% for 6 alleles) of its constituent peptides are predicted as binders. Our software can be accessed at .

PMID:
16806474
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk