Format

Send to

Choose Destination
See comment in PubMed Commons below
Nat Chem Biol. 2006 Aug;2(8):417-22. Epub 2006 Jun 25.

Coupling ligand structure to specific conformational switches in the beta2-adrenoceptor.

Author information

  • 1Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, Palo Alto, California 94305, USA.

Abstract

G protein-coupled receptors (GPCRs) regulate a wide variety of physiological functions in response to structurally diverse ligands ranging from cations and small organic molecules to peptides and glycoproteins. For many GPCRs, structurally related ligands can have diverse efficacy profiles. To investigate the process of ligand binding and activation, we used fluorescence spectroscopy to study the ability of ligands having different efficacies to induce a specific conformational change in the human beta2-adrenoceptor (beta2-AR). The 'ionic lock' is a molecular switch found in rhodopsin-family GPCRs that has been proposed to link the cytoplasmic ends of transmembrane domains 3 and 6 in the inactive state. We found that most partial agonists were as effective as full agonists in disrupting the ionic lock. Our results show that disruption of this important molecular switch is necessary, but not sufficient, for full activation of the beta2-AR.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk