Coexistence in metacommunities: a tree-species model

Math Biosci. 2006 Jul;202(1):42-56. doi: 10.1016/j.mbs.2006.04.005. Epub 2006 Apr 25.

Abstract

Simple patch-occupancy models of competitive metacommunities have shown that coexistence is possible as long as there is a competition-colonization tradeoff such as that of superior competitors and dispersers. In this paper, we present a model of competition between three species in a dynamic landscape, where patches are being created and destroyed at a different rate. In our model, species interact according to a linear non-transitive hierarchy, such that species Y(3) outcompetes and can invade patches occupied by species Y(2) and this species in turn can outcompete and invade patches occupied by the inferior competitor Y(1). In this hierarchy, inferior competitors cannot invade patches of species with higher competitive ability. Analytical results show that there are regions in the parameter space where coexistence can occur, as well as regions where each of the species exists in isolation depending on species' life-history traits associated with their colonization abilities and extinction proneness as well as with the dynamics of habitat patches. In our model, the condition for coexistence depends explicitly on patch dynamics, which in turn modulate the limiting similarity for species coexistence. Coexistence in metacommunities inhabiting dynamic landscapes although possible is harder to attain than in static ones.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ecosystem*
  • Mathematics
  • Models, Biological*
  • Trees