Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Neurosci. 2006 Jul;32(3):283-98. Epub 2006 Jun 21.

The effects of a dominant connexin32 mutant in myelinating Schwann cells.

Author information

  • 1Cell and Molecular Biology Graduate Group, The University of Pennsylvania Medical Center, Philadelphia, PA 19104-6077, USA.

Abstract

Mutations in GJB1, the gene encoding the gap junction protein connexin32 (Cx32), cause X-linked Charcot-Marie-Tooth disease, an inherited demyelinating peripheral neuropathy. We generated transgenic mice that express the R142W mutation in myelinating Schwann cells. The R142W mutant protein was aberrantly localized to the Golgi, indicating that it does not traffic properly, but the molecular organization of the myelin sheath, including the localization of Cx29, another connexin expressed by myelinating Schwann cells, was not disrupted. In a wild type background, this mutation dramatically decreased the level of wild type mouse Cx32 in immunoblots of sciatic nerve and caused demyelination. The expression of wild type human Cx32 with the same transgenic construct had different effects-increased amounts of Cx32, normal localization of Cx32 at nodes and incisures, and split myelin sheaths. Thus, the R142W mutant protein has dominant effects that are distinct from overexpression.

PMID:
16790356
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk