Format

Send to:

Choose Destination
See comment in PubMed Commons below
Curr Pharm Biotechnol. 2006 Jun;7(3):147-58.

Proteomic-based biomarker discovery with emphasis on cerebrospinal fluid and multiple sclerosis.

Author information

  • 1Institute of Medicine, University of Bergen and Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway. Frode.Berven@biomed.uib.no

Abstract

Discovery of disease specific biomarkers in human body fluids has become an important challenge in clinical proteomics. Facing the increasing threat of degenerative and disabling diseases like cancer, cardiovascular, neurological and inflammatory diseases in large parts of the world's population, there is an urgent need to improve early diagnostics. In this review we discuss possibilities and limitations connected to using mass spectrometry based proteomics in the search for novel biomarkers, with focus on multiple sclerosis as a typical representative for the large group of non-curable degenerative and disabling disease with the lack of specific tests for early diagnosis. Careful control of the pre-analytical phase including sampling, storage and fractionation of samples, in addition to a thoroughly considered patient selection, is important in order to avoid false biomarkers to appear in the resulting mass spectra. Furthermore, advanced computational tools are needed in order to discover potential biomarkers from the enormous data amounts generated by the mass spectrometers. The development of such computer tools is a research field currently in the start phase and could prove to be a bottle neck in the biomarker discovery the next years. Therefore, a rather detailed review of the most used computational and pre-analytical methods is given in this review. Mass spectrometry based biomarker discovery is undoubtedly still in its early infancy. However, in light of the potential of this technology to provide deep coverage of the body fluid proteomes, it will certainly consolidate its role in developing molecular medicine into clinical practice.

PMID:
16789900
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Bentham Science Publishers Ltd.
    Loading ...
    Write to the Help Desk