Send to:

Choose Destination
See comment in PubMed Commons below
J Colloid Interface Sci. 2006 Aug 15;300(2):805-8. Epub 2006 Apr 25.

Determining molecule-carbon surface adsorption energies using molecular mechanics and graphene nanostructures.

Author information

  • 1Department of Chemistry, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA.


Five model surfaces were developed using molecular mechanics with MM2 parameters. A smooth, flat model surface was constructed of three parallel graphene layers where each graphene layer contained 127 interconnected benzene rings. Four rough surfaces were constructed by varying the separation between a pair of graphene nanostructures placed on the topmost layer of graphene. Each nanostructure contained 17 benzene rings arranged in a linear strip. The parallel nanostructures were moved closer together to increase the surface roughness and to enhance the molecule-surface interaction. Experimental adsorption energy values from the temperature variation of second gas-solid virial coefficients values were available for 16 different alkanes, haloalkanes, and ether molecules adsorbed on Carbopack B (Supelco, 100 m(2)/g). For each of the five different surface models, sets of 16 calculated adsorption energies, E(cal)( *), were determined and compared to the available experimental adsorption energies, E( *). The best linear regression correlation between E( *) and E(cal)( *) was found for a 1.20 nm internuclei separation of the surface nanostructures, and for this surface model the calculated gas-solid interaction energies closely matched the experimental values (E( *)=1.018E(cal)( *), r(2)=0.964).


LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk