Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neurochem Int. 2006 Jul;49(2):113-26. Epub 2006 Jun 12.

Novel approaches for immunotherapeutic intervention in Alzheimer's disease.

Author information

  • 1The Institute for Brain Aging and Dementia, University of California Irvine, Irvine, CA 92697-4540, United States.

Abstract

Immunotherapy can attenuate amyloid neuropathology and improve cognitive function in transgenic models of Alzheimer's disease. However, the first clinical trial was halted when 6% of the Alzheimer's patients developed aseptic meningoencephalitis. Postmortem analysis of two cases with meningoencephalitis showed robust glial activation, T-cell infiltration and sporadic clearance of Abeta. Interestingly, transgenic mouse models of Alzheimer's disease failed as predictors of these adverse inflammatory events. However there are now several studies with amyloid precursor protein transgenic mice that have reported an increased risk of microhemorrhages at sites of cerebrovascular amyloid deposits and because approximately 80% of Alzheimer's patient's have cerebrovascular pathology, there is concern regarding clinical trials using passive administration of humanized anti-Abeta antibodies. Although many studies have now been published on immunotherapy in mouse models, the mechanism(s) of antibody-mediated clearance of beta-amyloid from the brain, and the cause of the antibody-induced microhemorrhages remain unclear. In this review, we will discuss the most recent results from the first clinical trial, offer speculation on possible causes for the failure of the trial, review data on antibody-mediated clearance mechanisms, explore the role of complement and inflammation in the clearance of beta-amyloid, and suggest novel strategies for avoiding problems in future clinical trials. The central hypothesis being proposed in this review is that anti-Abeta antibodies delivered directly to the CNS at the sites of amyloid deposits will be far more effective at clearing Abeta and safer than active or passive immunization strategies where the majority of the antibodies are in the periphery.

PMID:
16765487
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk