Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Arch Microbiol. 2006 Jul;186(1):51-9. Epub 2006 Jun 2.

Characterization of genes involved in fructose utilization by Lactobacillus fermentum.

Author information

  • 1Laboratory of Bioprocess Engineering, Department of Chemical Technology, Helsinki University of Technology, P.O. Box 9400, 02015 Espoo, Finland. miia.helanto@hut.fi

Abstract

The genes encoding phosphoglucose isomerase (fruI) and fructokinase (fruK) of Lactobacillus fermentum NRRL-B-1932 were sequenced. They constituted an operon, which is involved in fructose metabolism of this strain by channeling intracellular fructose into the phosphoketolase pathway. A third open reading frame, unkR, upstream of the operon was identified as homologous to genes of LacI/GalR family repressors. The UnkR repressor's role in transcriptional control of the fruIK operon could, however, not be established by electrophoretic mobility shift assay (EMSA) analysis. Sequence analysis revealed two putative catabolite responsive elements (cre) in the promoter region of fruIK suggesting that the fruIK operon is under negative regulatory control by carbon catabolite repression. Expression and enzyme activity data were compatible with the assumption that the fruIK operon is repressed by glucose. No sugar specific phosphoenolpyruvate sugar transferase system activity for the transport of fructose, glucose, sucrose or mannose could be detected in L. fermentum NRRL-B-1932 cells, which suggest that fructose is taken up by a permease system.

PMID:
16741753
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Springer
    Loading ...
    Write to the Help Desk