Send to:

Choose Destination
See comment in PubMed Commons below
Nat Struct Mol Biol. 2006 Jun;13(6):549-54. Epub 2006 May 28.

Probing SWI/SNF remodeling of the nucleosome by unzipping single DNA molecules.

Author information

  • 1Cornell University, Department of Physics, Laboratory of Atomic and Solid State Physics, Ithaca, New York 14853, USA.


Chromatin-remodeling enzymes can overcome strong histone-DNA interactions within the nucleosome to regulate access of DNA-binding factors to the genetic code. By unzipping individual DNA duplexes, each containing a uniquely positioned nucleosome flanked by long segments of DNA, we directly probed histone-DNA interactions. The resulting disruption-force signatures were characteristic of the types and locations of interactions and allowed measurement of the positions of nucleosomes with 2.6-base-pair (bp) precision. Nucleosomes remodeled by yeast SWI/SNF were moved bidirectionally along the DNA, resulting in a continuous position distribution. The characteristic distance of motion was approximately 28 bp per remodeling event, and each event occurred with a catalytic efficiency of 0.4 min(-1) per nM SWI/SNF. Remodeled nucleosomes had essentially identical disruption signatures to those of unremodeled nucleosomes, indicating that their overall structure remained canonical. These results impose substantial constraints on the mechanism of SWI/SNF remodeling.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk