Send to:

Choose Destination
See comment in PubMed Commons below
J Leukoc Biol. 2006 Aug;80(2):330-41. Epub 2006 May 26.

ICAM-1-dependent pathways regulate colonic eosinophilic inflammation.

Author information

  • 1Allergy and Inflammation Research Group, Division of Biochemistry and Molecular Biology, The John Curtin School of Medical Research, Australian National University, Canberra, Australia.


Eosinophilic inflammation is a common feature of numerous eosinophil-associated gastrointestinal (EGID) diseases. Central to eosinophil migration into the gastrointestinal tract are the integrin-mediated interactions with adhesion molecules. Although the mechanisms regulating eosinophil homing into the small intestine have begun to be elucidated, the adhesion pathways responsible for eosinophil trafficking into the large intestine are unknown. We investigated the role of adhesion pathways in eosinophil recruitment into the large intestine during homeostasis and disease. First, using a hapten-induced colonic injury model, we demonstrate that in contrast to the small intestine, eosinophil recruitment into the colon is regulated by a beta7 -integrin addressin cell adhesion molecule-1-independent pathway. Characterization of integrin expression on colonic eosinophils by flow cytometry analysis revealed that colonic CC chemokine receptor 3+ eosinophils express the intercellular adhesion molecule-1 (ICAM-1) counter-receptor integrins alphaL, alphaM, and beta2. Using ICAM-1-deficient mice and anti-ICAM-1 neutralizing antibodies, we show that hapten-induced colonic eosinophilic inflammation is critically dependent on ICAM-1. These studies demonstrate that beta2 -integrin/ICAM-1-dependent pathways are integral to eosinophil recruitment into the colon during GI inflammation associated with colonic injury.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk