Send to:

Choose Destination
See comment in PubMed Commons below
Am J Pathol. 2006 Jun;168(6):2014-26.

Glypican-1 is frequently overexpressed in human gliomas and enhances FGF-2 signaling in glioma cells.

Author information

  • 1University of Wisconsin-Madison, Department of Pathology and Laboratory Medicine, Clinical Sciences Center K4/850, 600 Highland Ave., Madison, WI 53792-8550, USA.


Signaling by fibroblast growth factor 2 (FGF-2), an autocrine stimulator of glioma growth, is regulated by heparan sulfate proteoglycans (HSPGs) via a ternary complex with FGF-2 and the FGF receptor (FGFR). To characterize glioma growth signaling, we examined whether altered HSPGs contribute to loss of growth control in gliomas. In a screen of five human glioma cell lines, U118 and U251 cell HSPGs activated FGF-2 signaling via FGFR1c. The direct comparison of U251 glioma cells with normal astrocyte HSPGs demonstrated that the glioma HSPGs had a significantly elevated ability to promote FGF-2-dependent mitogenic signaling via FGFR1c. This enhanced activity correlated with a higher level of overall sulfation, specifically the abundance of 2S- and 6S-containing disaccharides. Glioma cell expression of the cell-surface HSPG glypican-1 closely mirrored the FGF-2 coactivator activity. Furthermore, forced expression of glypican-1 in (glypican-1-deficient) U87 glioma cells enhanced their FGF-2 response. Immunohistochemical analysis revealed a highly significant overexpression of glypican-1 in human astrocytoma and oligodendroglioma samples compared with nonneoplastic gliosis. In summary, these observations suggest that altered HSPGs contribute to enhanced signaling of FGF-2 via FGFR1c in gliomas with glypican-1 playing a significant role in this mitogenic pathway.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk