Format

Send to

Choose Destination
See comment in PubMed Commons below
Pflugers Arch. 2007 Feb;453(5):591-600. Epub 2006 May 18.

Intracellular peptide transporters in human--compartmentalization of the "peptidome".

Author information

  • 1Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt, Germany.

Abstract

In the human genome, the five adenosine triphosphate (ATP)-binding cassette (ABC) half transporters ABCB2 (TAP1), ABCB3 (TAP2), ABCB9 (TAP-like), and in part, also ABCB8 and ABCB10 are closely related with regard to their structural and functional properties. Although targeted to different cellular compartments such as the endoplasmic reticulum (ER), lysosomes, and mitochondria, they are involved in intracellular peptide trafficking across membranes. The transporter associated with antigen processing (TAP1 and TAP2) constitute a key machinery in the major histocompatibility complex (MHC) class I-mediated cellular immune defense against infected or malignantly transformed cells. TAP translocates the cellular "peptidome" derived primarily from cytosolic proteasomal degradation into the ER lumen for presentation by MHC class I molecules. The homodimeric ABCB9 (TAP-like) complex located in lysosomal compartments shares structural and functional similarities to TAP; however, its biological role seems to be different from the MHC I antigen processing. ABCB8 and ABCB10 are targeted to the inner mitochondrial membrane. MDL1, the yeast homologue of ABCB10, is involved in the export of peptides derived from proteolysis of inner-membrane proteins into the intermembrane space. As such peptides are presented as minor histocompatibility antigens on the surface of mammalian cells, a physiological role of ABCB10 in the antigen processing can be accounted.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk