Send to

Choose Destination
See comment in PubMed Commons below
J Phys Chem B. 2006 May 25;110(20):9916-22.

In situ extended X-ray absorption fine structure study during selective alcohol oxidation over Pd/Al2O3 in supercritical carbon dioxide.

Author information

  • 1Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, HCI, Switzerland.


High-pressure in situ X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data are reported during the selective oxidation of benzyl alcohol to benzaldehyde in supercritical carbon dioxide over a Pd/Al(2)O(3) catalyst (shell impregnated). For this purpose, a continuous-flow system with a spectroscopic cell suitable for in situ X-ray absorption studies on heterogeneous catalysts up to 200 degrees C and 200 bar has been developed. Due to the high contribution of the dense fluid to the overall X-ray absorption, high stability of the process pressure is mandatory, particularly when recording EXAFS spectra. According to EXAFS and XANES results, the palladium particles were fully reduced after exposure to benzyl alcohol in scCO(2). In contrast to Pd-catalyzed liquid-phase oxidation, a higher oxygen tolerance of the catalyst was observed. Palladium was partially oxidized on the surface under typical reaction conditions (0.9 mol % benzyl alcohol/0.5 mol % O(2) in carbon dioxide), which gradually increased when the concentration of oxygen in the feed was raised. Both XANES and EXAFS data uncovered that palladium is mainly oxidized on the surface or within the outermost layers. These results are in accordance with simulations of the XANES data using the FEFF8.20 code (program for ab initio calculations on multiple scattering XAS) and EXAFS data fitting/simulation.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk