Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biomol Screen. 2006 Apr;11(3):269-76.

Monitoring 14-3-3 protein interactions with a homogeneous fluorescence polarization assay.

Author information

  • 1Department of Pharmacology, Emory University School of Medicine and Emory Chemistry-Biology Discovery Center, Emory University, Atlanta, GA 30322, USA.

Abstract

The 14-3-3 proteins mediate phosphorylation-dependent protein-protein interactions. Through binding to numerous client proteins, 14-3-3 controls a wide range of physiological processes and has been implicated in a variety of diseases, including cancer and neurodegenerative disorders. To better understand the structure and function of 14-3-3 proteins and to develop small-molecule modulators of 14-3-3 proteins for physiological studies and potential therapeutic interventions, the authors have designed and optimized a highly sensitive fluorescence polarization (FP)-based 14-3-3 assay. Using the interaction of 14-3-3 with a fluorescently labeled phosphopeptide from Raf-1 as a model system, they have achieved a simple 1-step "mix-and-measure" method for analyzing 14-3-3 proteins. This is a solution-based, versatile method that can be used to monitor the binding of 14-3-3 with a variety of client proteins. The 14-3-3 FP assay is highly stable and has achieved a robust performance in a 384-well format with a demonstrated signal-to-noise ratio greater than 10 and a Z' factor greater than 0.7. Because of its simplicity and high sensitivity, this assay is generally applicable to studying 14-3-3/client-protein interactions and especially valuable for high-throughput screening of 14-3-3 modulators.

PMID:
16699128
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk