Display Settings:

Format

Send to:

Choose Destination
J Biol Chem. 2006 Jul 14;281(28):19618-30. Epub 2006 May 10.

The HIV-1 pathogenicity factor Nef interferes with maturation of stimulatory T-lymphocyte contacts by modulation of N-Wasp activity.

Author information

  • 1Department of Virology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.

Abstract

The Nef protein is a key determinant of human immunodeficiency virus (HIV) pathogenicity that, among other activities, sensitizes T-lymphocytes for optimal virus production. The initial events by which Nef modulates the T-cell receptor (TCR) cascade are poorly understood. TCR engagement triggers actin rearrangements that control receptor clustering for signal initiation and dynamic organization of signaling protein complexes to form an immunological synapse. Here we report that Nef potently interferes with cell spreading and formation of actin-rich circumferential rings in T-lymphocytes upon surface-supported TCR stimulation. These effects were conserved among Nef proteins from different lentiviruses and occurred in HIV-1-infected primary human T-lymphocytes. This novel Nef activity critically depended on its Src homology 3 domain binding motif and required efficient association with Pak2 activity. Notably, whereas overall signaling microcluster formation immediately following TCR engagement occurred normally in Nef-expressing cells, the viral protein inhibited the concomitant activation of the actin organizer N-Wasp. During the subsequent maturation phase of the stimulatory contact, Nef interfered with the translocation of N-Wasp to the cell periphery, the overall induction of tyrosine phosphorylation, and the selective recruitment of phosphorylated LAT to stimulatory contacts. Consistent with such a critical role of N-Wasp in this process, Nef also blocked morphological changes induced by the known N-Wasp regulators Rac1 and Cdc42. Together, our results demonstrate that Nef alters both the amount and composition of signaling microclusters. We propose modulation of actin dynamics as an important mechanism for Nef-induced alterations of TCR signaling.

PMID:
16687395
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk