Format

Send to:

Choose Destination
See comment in PubMed Commons below
FEBS Lett. 2006 May 29;580(13):3136-44. Epub 2006 May 2.

Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants.

Author information

  • 1Department of Biology, College of Science, Yonsei University, Seoul 120-749, Republic of Korea.

Abstract

Xyloglucan endotransglucosylase/hydrolase (XTH) has been recognized as a cell wall-modifying enzyme, participating in the diverse physiological roles. From water-stressed hot pepper plants, we isolated three different cDNA clones (pCaXTH1, pCaXTH2, and pCaXTH3) that encode XTH homologs. RT-PCR analysis showed that three CaXTH mRNAs were concomitantly induced by a broad spectrum of abiotic stresses, including drought, high salinity and cold temperature, and in response to stress hormone ethylene, suggesting their role in the early events in the abiotic-related defense response. Transgenic Arabidopsis plants that constitutively expressed the CaXTH3 gene under the control of the CaMV 35S promoter exhibited abnormal leaf morphology; the transgenic leaves showed variable degrees of twisting and bending along the edges, resulting in a severely wrinkled leaf shape. Microscopic analysis showed that 35S-CaXTH3 leaves had increased numbers of small-sized cells, resulting in disordered, highly populated mesophyll cells in each dorsoventral layer, and appeared to contain a limited amount of starch. In addition, the 35S-CaXTH3 transgenic plants displayed markedly improved tolerance to severe water deficit, and to lesser extent to high salinity in comparison with the wild-type plants. These results indicate that CaXTH3 is functional in heterologous Arabidopsis cells, thereby effectively altering cell growth and also the response to abiotic stresses. Although the physiological function of CaXTHs is not yet clear, there are several possibilities for their involvement in a subset of physiological responses to counteract dehydration and high salinity stresses in transgenic Arabidopsis plants.

PMID:
16684525
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk