Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biomacromolecules. 2006 May;7(5):1665-70.

Synthesis of copolymers containing an active ester of methacrylic acid by RAFT: controlled molecular weight scaffolds for biofunctionalization.

Author information

  • 1The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.

Abstract

We report the controlled radical copolymerization of N-(2-hydroxypropyl)methacrylamide (HPMA) with a monomer containing an active ester, N-methacryloyloxysuccinimide (NMS), by reversible addition fragmentation chain transfer (RAFT). The large difference in the reactivity ratios of HPMA and NMS resulted in significant variations in copolymer composition with increasing conversion during batch copolymerization. The use of a semi-batch copolymerization method, involving the gradual addition of the more reactive NMS, allowed uniformity of copolymer composition to be maintained during the polymerization. We synthesized polymers in a wide range of molecular weights (M(n) = 3000-50,000 Da) with low polydispersities (1.1-1.3). The effect of the ratio of monomer to chain transfer agent (CTA) on the molecular weight of the polymer was investigated. Given the numerous applications of poly(HPMA)-based conjugates in designing polymeric therapeutics, these controlled molecular weight activated polymers represent attractive scaffolds for biofunctionalization. As a demonstration, we attached a peptide to the activated polymer backbone to synthesize a potent controlled molecular weight polyvalent inhibitor of anthrax toxin.

PMID:
16677052
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk