Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Phys Chem B. 2006 May 11;110(18):9188-94.

Water molecule adsorption properties on the BiVO4 (100) surface.

Author information

  • 1Nanomaterials Laboratory, National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan. oshikri.mitsutake@nims.go.jp

Abstract

The water absorption properties at the surface of BiVO4 are attracting a great deal of attention because the system is a promising candidate as a photocatalyst operating in the visible light range. This has motivated the present investigation via first principles molecular dynamics, which has revealed that a H2O molecule is adsorbed molecularly, instead of dissociatively, at the fivefold Bi site with an adsorption energy of approximately 0.58 eV/molecule. The band gap of the system shrinks slightly (by approximately 0.2 eV) upon water adsorption and it is likely that oxygen atoms belonging to the adsorbed water molecules to the Bi sites are oxidized, as inferred by the small Bi-Owater equilibrium distance (approximately 2.6-2.8 A) very close to the Bi-O bond in the bulk crystal. In the case of water adsorption at a Bi site, the distance between Hwater and V, which is a reduction site, is larger than in the case of adsorption at a V site, indicating that the proton reduction processes may be suppressed.

PMID:
16671733
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk