Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1992 Jan;98(1):137-42.

Enhanced Sensitivity to Ethylene in Nitrogen- or Phosphate-Starved Roots of Zea mays L. during Aerenchyma Formation.

Author information

  • 1Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77843.

Abstract

Adventitious roots of maize (Zea mays L. cv TX 5855), grown in a well-oxygenated nutrient solution, were induced to form cortical gas spaces (aerenchyma) by temporarily omitting nitrate and ammonium (-N), or phosphate (-P), from the solution. Previously this response was shown (MC Drew, CJ He, PW Morgan [1989] Plant Physiology 91: 266-271) to be associated with a slower rate of ethylene biosynthesis, contrasting with the induction of aerenchyma by hypoxia during which ethylene production is strongly stimulated. In the present paper, we show that aerenchyma formation induced by nutrient starvation was blocked, under noninjurious conditions, by addition of low concentrations of Ag(+), an inhibitor of ethylene action, or of aminoethoxyvinyl glycine, an inhibitor of ethylene biosynthesis. When extending roots were exposed to low concentrations of ethylene in air sparged through the nutrient solution, N or P starvation enhanced the sensitivity to exogenous ethylene at concentrations as low as 0.05 microliters ethylene per liter air, promoting a more rapid and extensive formation of aerenchyma than in unstarved roots. We conclude that temporary deprivation of N or P enhances the sensitivity of ethylene-responsive cells of the root cortex, leading to cell lysis and aerenchyma.

PMID:
16668604
[PubMed]
PMCID:
PMC1080160
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk