Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1991 Jan;95(1):222-7.

Calcium-dependent phosphorylation of symbiosome membrane proteins from nitrogen-fixing soybean nodules : evidence for phosphorylation of nodulin-26.

Author information

  • 1Center for Legume Research, and the Department of Biochemistry, University of Tennessee, Knoxville, Tennessee 37996.

Abstract

By using a peptide (CK-15) based on the COOH-terminal sequence of nodulin-26, we have demonstrated the presence of a Ca(2+)-dependent protein kinase in soluble as well as particulate fractions of nitrogen-fixing soybean (Glycine max) root nodules. Substantial enzyme activity was found in symbiosome membranes. The soluble enzyme was purified 1570-fold. The enzyme was fractionated from endogenous calmodulin and yet was fully activated by Ca(2+) (K(0.5) = 0.4 micromolar) in the absence of exogenous calmodulin, phosphatidylserine and 1,2-dioleylglycerol, oleic acid, and platelet activating factor. CK-15 was used to generate a site-specific antibody to nodulin-26. The antibody reacted with a protein in the symbiosome membrane with an apparent molecular mass of 27,000 daltons, consistent with the molecular mass predicted for nodulin-26 from the deduced amino acid sequence. A symbiosome membrane protein with an identical electrophoretic mobility was phosphorylated in vitro in a Ca(2+)-dependent manner. Additionally, this symbiosome membrane protein was phosphorylated when nodules were incubated with (32)P-phosphate. Overall, the results show the existence of a Ca(2+)-dependent and calmodulin/lipid-independent enzyme in nitrogen-fixing soybean root nodules and suggest that nodulin-26 is a substrate for Ca(2+)-dependent phosphorylation.

PMID:
16667955
[PubMed]
PMCID:
PMC1077509
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk