Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1990 Apr;92(4):871-80.

Sealed inside-out and right-side-out plasma membrane vesicles : optimal conditions for formation and separation.

Author information

  • 1Department of Plant Biochemistry, University of Lund, P. O. Box 7007, S-220 07 Lund, Sweden.

Abstract

Plasma membrane preparations of high purity (about 95%) are easily obtained by partitioning in aqueous polymer two-phase systems. These preparations, however, mainly contain sealed right-side-out (apoplastic side out) vesicles. Part of these vesicles have been turned inside-out by freezing and thawing, and sealed inside-out and right-side-out vesicles subsequently separated by repeating the phase partition step. Increasing the KCI concentration in the freeze/thaw medium as well as increasing the number of freeze/thaw cycles significantly increased the yield of inside-out vesicles. At optimal conditions, 15 to 25% of total plasma membrane protein was recovered as inside-out vesicles, corresponding to 5 to 10 milligrams of protein from 500 grams of sugar beet (Beta vulgaris L.) leaves. Based on enzyme latency, trypsin inhibition of NADH-cytochrome c reductase, and H(+) pumping capacity, a cross-contamination of about 20% between the two fractions of oppositely oriented vesicles was estimated. Thus, preparations containing about 80% inside-out and 80% right-side-out vesicles, respectively, were obtained. ATPase activity and H(+) pumping were both completely inhibited by vanadate (K(i) approximately 10 micromolar), indicating that the fractions were completely free from nonplasma membrane ATPases. Furthermore, the polypeptide patterns of the two fractions were close to identical, which shows that the vesicles differed in sidedness only. Thus, preparations of both inside-out and right-side-out plasma membrane vesicles are now available. This permits studies on transport, signal transduction mechanisms, enzyme topology, etc., using plasma membrane vesicles of either orientation.

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk