Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1986 Dec;82(4):1154-7.

Presence and identification of polyamines in xylem and Phloem exudates of plants.

Author information

  • 1Department of Horticulture, The Hebrew University of Jerusalem, P. O. Box 12, Rehovot 76100, Israel.


Polyamines were identified by high performance liquid chromatography (benzoylation) and by thin layer chromatography (dansylation) in xylem exudates from stems of sunflowers (Helianthus annuus [L.]), mung bean (Vigna radiata [L.] Wilczek), grapevine (Vitis vinifera [L.] cv Grenache), and orange (Citrus sinensis [L.] Osbeck, cv Valencia), as well as in phloem sap (using elution into EDTA) of sunflower and mung bean plants. Putrescine was the major polyamine detected, ranging in concentrations of 150 to 9200 picomoles per milliliter exudate, whereas only trace amounts of spermine were detected. High amounts of putrescine and spermidine were found in EDTA eluates (possibly phloem sap) as compared with elution into water. Concentrations of putrescine and spermidine in xylem exudates were related to the physiological conditions of the plants prior to exudate collection. More putrescine was found in exudates of older than in younger sunflower plants, and salt stress applied to sunflower plants resulted in a higher concentration of putrescine and spermidine in the exudate. The presence and abundance of putrescine and spermidine in xylem and phloem exudates indicate that polyamines may be translocated in plants. This long-distance translocation further supports the hypothesis that polyamines have a regulatory role in plant growth and response to stress.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk