Send to:

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1984 Oct;76(2):447-51.

Spontaneous Chemiluminescence of Soybean Embryonic Axes during Imbibition.

Author information

  • 1Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina.


Isolated soybean (Glycine max L. var Hood) embryonic axes have a spontaneous chemiluminescence (about 150 counts per minute per embryo) that increases showing two phases, upon water imbibition. The first photoemission burst was measured between 0 and 7 hours of imbibition with a maximum of about 350 counts per minute per embryo after 2 hours. The second photoemission phase, between 7 and 30 hours, increased from about 220 to 520 counts per minute per embryo. Both chemiluminescence phases were inhibited by infused butylated hydroxyanisole while only the second phase was inhibited by infused salicylhydroxamic acid. On the basis of the sensitivity of the lipoxygenase reaction to both inhibitors (about 90%), the first burst is tentatively assigned to oxy-radicals mobilized upon water uptake by the embryonic axes, and the second phase is tentatively identified as due to lipoxygenase activity. The in vivo lipoxygenase activity of the embryonic axes was estimated by both the fraction of total oxygen uptake that was inhibited by butylated hydroxyanisole and by the fraction of photoemission that was inhibited by butylated hydroxyanisole and by salicylhydroxamic acid. Both approaches indicated marked increases (5-fold and 12-fold, respectively) of lipoxygenase activity between 2 and 30 hours of imbibition. The measured chemiluminescence per O(2) uptake ratio (the experimental quantum yield) for the lipoxygenase reaction (3.3 x 10(-14) counts per O(2) molecule) was used to estimate the O(2) uptake due to lipoxygenase activity from the photoemission of the embryonic axes after 30 hours of imbibition. The value (0.54 microliters per minute per axis) was close to the butylated hydroxyanisole-sensitive O(2) uptake (1.2 microliters O(2) per minute per axis) of the same embryonic axes. Chemiluminescence may afford a noninvasive assay for lipoxygenase activity in intact plant tissues.

Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk