Format

Send to:

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1982 May;69(5):1145-9.

Complete turgor maintenance at low water potentials in the elongating region of maize leaves.

Author information

  • 1United States Department of Agriculture, Science and Education Administration, Agricultural Research, University of Illinois, Urbana, Illinois 61801.

Abstract

Leaf elongation rate, water potential, and osmotic potential were measured in the fifth leaf of maize (Zea mays L.) plants growing in soil from which water was withheld for varying times. Elongation occurred in the basal region, which was enclosed by other leaf sheaths. When water was withheld from the soil, leaf elongation decreased and eventually ceased even though enough solutes accumulated in the elongating region to maintain turgor virtually constant. In the exposed blade, however, turgor was lost and wilt symptoms developed. If the night was prolonged, the elongating region lost much of its ability to accumulate solute, which suggests that the accumulating solutes were of recent photosynthetic origin. Under these conditions, leaf elongation was restricted to higher water potentials than under the usual photoperiodic regime.The solute accumulation and turgor maintenance of the elongating region at low water potentials indicate that differences in water status and physiological behavior exist along grass leaves and that the water status of the elongating region cannot be inferred from measurements on the exposed blade. The increased sensitivity of leaf elongation to low water potentials in prolonged darkness indicates that accumulation of solute and maintenance of turgor play a role in maintaining leaf growth. However, the inhibition of elongation that occurred even when solute accumulation was sufficient to completely maintain turgor indicates that some factor other than photosynthate supply and turgor also affected growth and caused most of the losses in growth under dry conditions.

PMID:
16662360
[PubMed]
PMCID:
PMC426374
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk