Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1992 Oct;100(2):565-75.

Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae.

Author information

  • 1Oceanographic and Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, New York 11973.


The role of iron in regulating light harvesting and photochemical energy conversion processes was examined in the marine unicellular chlorophyte Dunaliella tertiolecta and the marine diatom Phaeodactylum tricornutum. In both species, iron limitation led to a reduction in cellular chlorophyll concentrations, but an increase in the in vivo, chlorophyll-specific, optical absorption cross-sections. Moreover, the absorption cross-section of photosystem II, a measure of the photon target area of the traps, was higher in iron-limited cells and decreased rapidly following iron addition. Iron-limited cells exhibited reduced variable/maximum fluorescence ratios and a reduced fluorescence per unit absorption at all wave-lengths between 400 and 575 nm. Following iron addition, variable/maximum fluorescence ratios increased rapidly, reaching 90% of the maximum within 18 to 25 h. Thus, although more light was absorbed per unit of chlorophyll, iron limitation reduced the transfer efficiency of excitation energy in photosystem II. The half-time for the oxidation of primary electron acceptor of photosystem II, calculated from the kinetics of decay of variable maximum fluorescence, increased 2-fold under iron limitation. Quantitative analysis of western blots revealed that cytochrome f and subunit IV (the plastoquinone-docking protein) of the cytochrome b(6)/f complex were also significantly reduced by lack of iron; recovery from iron limitation was completely inhibited by either cycloheximide or chloramphenicol. The recovery of maximum photosynthetic energy conversion efficiency occurs in three stages: (a) a rapid (3-5 h) increase in electron transfer rates on the acceptor side of photosystem II correlated with de novo synthesis of the cytochrome b(6)/f complex; (b) an increase (10-15 h) in the quantum efficiency correlated with an increase in D1 accumulation; and (c) a slow (>18 h) increase in chlorophyll levels accompanied by an increase in the efficiency of energy transfer from the light-harvesting chlorophyll proteins to the reaction centers.

Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk