Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Mol Diagn. 2006 May;8(2):209-17.

Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis.

Author information

  • 1Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA. shuji_ogino@dfci.harvard.edu

Abstract

Assays to measure DNA methylation, which are important in epigenetic research and clinical diagnostics, typically rely on conversion of unmethylated cytosine to uracil by sodium bisulfite. However, no study has comprehensively evaluated the precision and performance characteristics of sodium bisulfite conversion and subsequent quantitative methylation assay. We developed quantitative real-time polymerase chain reaction (MethyLight) to measure percentage of methylated reference (PMR, ie, degree of methylation) for the MGMT, MLH1, and CDKN2A (p16) promoters. To measure the precision of bisulfite conversion, we bisulfite-treated seven different aliquots of DNA from each of four paraffin-embedded colon cancer samples. To assess run-to-run variation, we repeated MethyLight five times. Bisulfite-to-bisulfite coefficient of variation (CV) of PMR ranged from 0.10 to 0.38 (mean, 0.21), and run-to-run CV of PMR ranged from 0.046 to 0.60 (mean, 0.31). Interclass correlation coefficients were 0.74 to 0.84 for the three loci, indicating good reproducibility. DNA mixing study with methylated and unmethylated DNA showed good linearity of the assay. Of 272 colorectal cancers evaluated, most showed PMR either <1 or >10, and promoter methylation (PMR >4) was tightly associated with loss of respective protein expression (P < 10(-16)). In conclusion, sodium bisulfite conversion and quantitative MethyLight assays have good precision and linearity and can be effectively used for high-throughput DNA methylation analysis on paraffin-embedded tissue.

Comment in

PMID:
16645207
[PubMed - indexed for MEDLINE]
PMCID:
PMC1867588
Free PMC Article

Images from this publication.See all images (3)Free text

Figure 1
Figure 2
Figure 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk